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Abstract

Reinforcement of nano composite materials requires the consideration of various length and time scales. In this paper it is shown, how

dynamical properties of the rubber phase localized on the filler particles will contribute in a special way to the reinforcement and the

viscoelastic properties of the elastomers. The contribution from the disorder surface determines mainly the viscoelastic behavior in some of

the frequency regimes.
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1. Introduction

Most of the chemical aspects of the reinforcement of

composite materials are far from being simple [1]. A typical

and well known example is reinforced elastomers, which

find their application in the car tire industry. These materials

allow indeed a physical formulation of most of the problems

and offer at least for some questions suggestions for

solutions. The main reason for the complication is the

relevance of many length and time scales, which is one of

the issue which will be developed during this paper.

The basic achievement of filling relatively soft networks,

i.e. cross-linked polymer chains, is to reach a significant

reinforcement of the mechanical properties. For that

purpose, active fillers like carbon black (cb) or silica are

of special practical interest as they lead to a strong

modification of the elastic properties of the rubber than a

mere addition of hard randomly dispersed particles. The

additional reinforcement essentially is caused by the

complex structure of the active fillers (see e.g. [2] and

references therein).

The main intention of the present work is to gain further

insight into this relationship between disordered filler

surface and the reinforcement of elastomers. Most fillers

show universal structural features on different length scales,
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see Fig. 1: carbon black consists of spherical particles with a

rough and energetically disordered surface [3,4], forming

rigid aggregates in the 100 nm range with a fractal structure.

Agglomeration of the aggregates on a larger scale leads to

the formation of filler clusters and even a filler network at

high enough cb concentrations.

These universal features are reflected in the correspond-

ing universal properties of filled systems. It has been shown

for example, that the geometry and activity of the filler

surface plays a major role for the polymer–filler interaction:

the physical and chemical binding of polymers to the filler

surfaces depends on the amount of surface disorder. On

intermediate and large length scales the contribution of

aggregate and agglomerate structure is expected to be

dominant, respectively. Interesting phenomena like the

enhanced hydrodynamic reinforcement and the Payne effect

can be attributed to the fractal nature of the filler and cluster

structure. From these considerations it is clear that the

classical approaches to rubber elasticity are not sufficient to

describe the physics of such systems. Instead, different

theoretical methods have to be employed to deal with the

various interactions and, consequently, reinforcing mech-

anisms on different length scales. Within this respect, we

have to indicate physically relevant length scales as well.

Considerable reinforcement can only be achieved if the

relevant scales which concern the filler particles coincide

with those of the polymer matrix, see Fig. 2.

Fig. 2 visualizes the interplay between the length scales

by comparison of the relevant sizes. The scales of

interactions coincide on the relevant length scales between

the monomer size, important for adsorption and chemical
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Fig. 1. Structural disorder in carbon black filled elastomers on different

length scales.

Fig. 2. Comparison of the length scales for the different structural elements.

The filler particles, here carbon black have basically carbon surfaces. These

interact directly with the monomers on their length scales. However, the

aggregates and agglomerates have similar dimensions as the polymer coils,

i.e. they can directly interact with each other.
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sticking. The structures on larger scales, such as agglom-

erates and aggregates do have similar scales with typical

polymer radii. Thus we may expect scale dependent

contributions to the modulus based on the interactions

between rubber matrix chains and filler particles.

Earlier studies indicate that the enhancement of the

elastic modulus cannot be understood by one simple theory,

since several types of interactions and many different length

scales are involved [2,5]. In carbon black and silica filled

elastomers, the contribution to reinforcement on small

scales can be attributed to the complex structure of the

branched filler aggregates as well as to a strong surface

polymer interaction, leading to the bound rubber. The filler

particles are ‘coated’ with polymer chains [2]. On larger

scales the hydrodynamic aspect of the reinforcement

dominates. Hydrodynamic reinforcement plays a major

role not only in carbon black filled elastomers, but also in

composite systems with soft inclusions. At macroscopic

length scales the filler networking at large filler volume

fractions plays the dominant role. The simplest approach

was presented by Smallwood [6], where it was shown that

filler particles in a rubber matrix yield GZG0(1C2.5f),

where f is the volume fraction of the filler components and

the elastic modulus of the rubber matrix [7].

However, these classical theories and most of their
extensions ignore the important role of the filler polymer

interactions. Its strong appearance and important contri-

bution can be viewed from the aggregation of the filler

particles to large clusters and their associated huge surfaces.

The heterogeneities of these surfaces yield a peculiar

dynamic behavior of the polymer chains close to them.

Often the literatures classify the dynamic phase as bound

rubber. In the present paper, we will emphasize the local

polymer–filler interaction and discuss their consequences in

more detail. In the present paper, we concentrate, therefore,

on the contribution to reinforcement from the filler polymer

interactions. It turns out, that the heterogeneous surface

provides a basis for strong correlations on dynamic scales,

which are relevant for the viscoelastic properties of the

macroscopic systems in specific frequency regimes.
2. Polymer localization on heterogeneous surfaces

To begin with we start from some naive scaling

considerations concerning the statistics of chains close to

heterogeneous surfaces. Although the behavior of polymers

on heterogeneous surfaces is a general problem in

theoretical physics it provides deep insight in the problem

of reinforcement and contributions. It is well accepted that

the filler particles form large clusters which may percolate at

large filler concentration the ideal case to provide a most



Fig. 4. Aggregate with spatially or energetically rough surface. The

irregularities at the boundaries visualize both types of disorder.
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significant reinforcement effect on large macroscopic scales

[5,8–10]. In consequence these clusters form large surfaces

inside the elastomer and allows for a significant polymer–

filler contacts as in Fig. 3.

However, the filler particles do not have homogeneous

surfaces, but they are strongly disordered. Their disorder

can basically distinguished by two extreme cases. The first

is that they are spatially disordered, i.e. rough in a classical

sense. Indeed several studies [11–13] suggest a strongly

heterogeneous surface. Gerspacher provided several data

which suggest even fractal surface properties for several

carbon blacks [11,12].

Secondly, the surfaces may be characterized by a strong

energetic disorder. That means that the surface is strongly

heterogeneous with respect to their interaction with the

environment (Fig. 4). In an earlier paper, we have already

investigated the static matters form a general point of view

[14], and we refer the reader to this reference.

The main idea is to model the polymer–filler-surface

interaction in a sufficiently simple but still appropriate way.

It turns out that it is most useful to model the filler surface by

a random potential, which covers to some extent the two

aspects already mentioned, i.e. spatially rough surfaces and

energetically heterogeneous surface. Therefore, we use as a

random potential V(R(n)) whose properties must be

specified.

The theoretical description of a chain in a random

potential starts with a Hamiltonian for the polymer which

interacts with the random surface as
bHZ
3

2b2

ðN
0
dn

vRðnÞ

vn

� �2

C

ðN
0
dnVðRðnÞÞ: (1)
Here, the first term is nothing but the Gaussian connectivity

of the chain, which leads to the Gaussian distribution if the

potential is set to be zero. The parameter n counts the

monomers along the contour and N is the chain length. For

simplicity we assume that the potential has a completely

random structure, i.e.
Fig. 3. A cluster of filler particles embedded in the rubber matrix. The

cluster itself contributes to the so-called hydrodynamic reinforcement,

which is mainly given by the volume effects and the cluster structure.
hVðRðnÞiZ 0

hVðRðnÞÞVðRðn0ÞÞiZDdðRðnÞKRðn0ÞÞ
(2)

En plus, this simplification makes calculations feasible from

a technical point of view. An illustration of the surface is

depicted in Fig. 5.

At first sight the use of such an uncorrelated random

potentials might appear not appropriate to model the surface

of filler particles, but it turn out that it satisfies already many

conditions which yield the main physical properties in

statics and as well in dynamics. Most of the surface

properties are described in the parameter D, which defines

typical volume (of ‘hole’ in surface).

However, it is not a major problem to generalize all what

follows to potentials with different (fractal properties) as it

is shown in Fig. 6.

Then the additional fractal correlations show up in a

surface fractal dimension ds and the correlation of the

potential is changed to be

hVðRðnÞÞVðRðn0ÞÞiZ
DbKds

jRðnÞKRðn0Þj3Kds
(3)

with its well known limits: ds/0 for the totally random

case as discussed above, dsZ2 for completely flat surface,

and finally the most interesting case 2!ds!3 for Brownian

surfaces. For the present discussion we will stay, however,

with the simplest case, i.e. uncorrelated surfaces.

The main theoretical results after tedious calculations

can be summarized in terms of the free energy
Fig. 5. Theoretical model for the filler surface.



Fig. 6. Brownian surfaces with different surface fractal properties. The

fractal dimension on the left picture is close to ds Z2.
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F

kBT
x

R2

Nb2
C

Nb2

R2
KD1=2 N

R3=2
(4)

The first two terms represent the nature of the Gaussian

chain in extension and confinement. The negative sign of the

effective disorder potential has its origin by the effective

attraction from the disorder. In earlier publications we have

already shown that any disorder induces an effective

attraction [5,14]. The special form of the potential

corresponds to a typical energy barrier produced by the

disorder. This attractive nature is of special significance,

since it conforms earlier statements and confines the chain.

In order to find a significant chain confinement the disorder

D must become larger than the entropy term. This yields the

condition that the critical surface roughness is Dcxb3NK1=4.

Only for values for D larger than this critical value the filler

particle is substantially active to attract the chains. If this is

the case the chains become ‘localized’. Indeed upon

minimization of the free energy we find for the chain size

Rxb
b3

D

� �
(5)

which means that the size of the Gaussian chain is entirely

determined by the disorder. Physically this shows that the

chain becomes attracted by the surface and localized in an

appropriate hole of the typical size as cartooned in Fig. 7.

It is important to realize that the chain conformations are

totally determined by the disorder, thus that upon the

localization process the chain adopts the disorder size. So

far the argument applies for single chains. In filled rubbers

the chains are not free but bound into a network. However, it

can be shown that similar arguments apply. The only
Fig. 7. Localization of a chain in a typical spatial or energetic hole of sizeD.

The Gaussian chain adopts the size specified by the disordered structure.
change, which has to be made, concerns the disorder

strength. It can be shown by a simple calculation that the

localization criterion modifies in the case of networks to

D

b3
ONmesh 0|{z}

dense networks

DOx3 (6)

where Nmesh is the meshsize of the network and x the

corresponding correlation length, i.e. the mean distance

between to crosslinks (see Fig. 8).

More detailed calculations show that for a given

(sufficiently large) filler activity D parts of the network

localize in a similar way compared to the free chain. The

localization expressed by the strong conformational chain

may let us conclude that the strongly bound chains close to

the surface form the occluded rubber in certain particle

reinforced elastomers.
3. Dynamics of localizing chains

So far we have discussed static picture only. It is most

challenging to study the dynamics of such localized chains

and discuss their contribution to the viscoelastic properties

of the reinforced elastomers. These considerations are of

special importance since it will state nature of polymer

dynamics in the localized phase. Moreover, it will describe

the dynamic behavior of occluded ‘rubber phase’ and the

chain change in the local dynamics of the chains, which will

contribute to the shear modulus G(u) in a natural way.

We have studied the dynamics of polymers confined in a

random potential by the use of Langevin dynamics. This is

the natural way to find modifications of the motion of the

center of mass and the change of the Rouse modes. In the

following we will only summarize the results and refer

the reader for the details of the extended mathematical paper

[15].

The first observation is that the center of mass (CM)

diffusion ‘freezes’, and we observe a behavior for the

diffusion constant of the chain
Fig. 8. Localization of network chains in a typical spatial or energetic hole

of size D. The localization takes place on scales larger than the meshsize x,

if the they are able to fit in, i.e. for large enough disorder.
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DCM ZD0ð1KD=DcÞ (7)

where D0 denotes the bare diffusion constant without

disorder. Therefore, we may conclude that the chains are

dynamically localized as well. Once the filler activity

exceeds a certain value Dc the chains become frozen in the

disorder, i.e. they do not diffuse anymore and are bound by

the surface. This result suggests already a naive estimate of

the shift of the glass transition temperature of the chains

localized at the active surface to DTgf(D/b3)2. Although
this appears, speculative several experiments suggests

measurable shift of the glass transition temperature, which

is at least in accord with the model presented here.

The more important problem is related with the internal

modes of the chain. If the chains freeze in the disordered

surfaces, some of the internal modes have to freeze also. It is

not sufficient that the CM motion ceases, also several Rouse

modes must freeze out such that the chain can localize. To

do so we use the simplest approximation and study Rouse

chains in the random potential. Usually the chain dynamics

is described by Rouse modes, which decompose the chain

motion into different modes, which are characterized by a

typical relaxation time

tqf
zN2b2

kBT

1

q2
(8)

Here z is the friction coefficient and q are the Rouse modes.

Large values of q correspond to small distances in the chain,

i.e. local motions inside the chain. Small numbers of q

describe large scale motions. The center of mass motion can

be viewed as the limit q/0. Usually in free polymer chains

all motions relax to zero, i.e. their correlation function can

be described as

correlationsfexp ðKt=tqÞ

In localized Rouse chains these statements no longer hold.

To begin with we may try the most naive scaling, by

introducing the equation of motion for the Rouse modes in

terms of a Langevin equation. The most simple estimates

ignore the coupling between different modes which is

naturally introduced by the disorder or the random potential.

Although we neglect an essential part of the physics, the

following scaling argument is useful, because it introduces

some limits, which are relevant for applications.

The Hamiltonian Eq. (1) can be represented in terms of

classical Rouse modes [16]. The first term, i.e. the gaussian

connectivity is diagonal in the modes. The disorder term

cannot be represented simply in modes, therefore, it is left

here as a mean field like acting term. The Hamiltonian reads

then simply

bH ¼
d

2b2

X
q

q2jRqj
2 K

ffiffiffiffi
D

p N

Rd=2
; (9)

and the corresponding Rouse equation is then given by [16]
z0
vRq

vt
¼K

dH

dRq

þ fqðtÞ: (10)

Here z0 is the monomer friction coefficient and fq(t) a

random force with white noise character. In general these

types of stochastic differential equations are hard to solve,

especially for problems involving disorder. The simplest

approximation is then to try a mode decoupling and making

use of an appropriate approximation for the disorder term.

To see some of the important issues we may use the

Hamiltonian directly and estimate the last term by its mean

value, as it has been done already earlier in a similar

Ginzburg argument, i.e.
ffiffiffiffi
D

p
N
Rd=2e ffiffiffiffi

D
p

Nð1Knd=2Þ. Then, when we

ask for localized chains, there should be according to the

static considerations above no chain length dependence

involved, i.e. the radius of gyration scales as RwN0. In

terms of the mode dependence this can be expressed by.

hjRqj
2iw

1

q
: (11)

Then we may distinguish between the large and small scale

modes via

q2c!
D

bd

� �
Nð2KndÞ (12)

which suggests that large scale motions frozen for a certain

disorder strength and a certain chain length. For three

dimensional gaussian chains the mode separation comes at

q2cxðD=b3ÞN1=2. This result suggests that, all modes which

satisfy the inequality are frozen. Especially this means that

large-scale motions freeze out at a certain disorder. The

criterion for the freezing is also determined by the radius of

gyration RgZbN1/2 and chain density rZN/R3. This means,

that only the appropriate chain density with its N Rouse

modes fit into the hole of volume D the chain localizes its

modes which satisfy the inequality (12). Then modes q!qc
localized modes are fitted inside, and only local motion

possible.

These considerations are naturally too simple. However,

more sophisticated theories show, that the disorder induced

freezing of the chains implies a non-exponential decay [15].

Moreover certain correlations do no longer relax to zero and

follow a non-exponential decay law and relax only to a finite

value larger than zero, i.e.

correlationsf exp ðKðt=t0qÞ
bÞC f ðqÞ (13)

The appearance of the non-ergodicity parameter f(q), which

is mode dependent, monitors then the localization process.

If the solution of the Langevin equation shows f(q)Z0, no

localization and mode freezing takes place. Only for finite

values for f(q) we can expect freezing effects. Indeed

detailed calculations show that whenever the non-ergodicity

parameter is zero, all relaxations should be exponential, i.e.

bZ1. We expect, therefore, a non-zero value for f(q) from a

certain value of the filler activity or disorder parameter D.
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To be more precise, the mathematical (and numerical)

analysis requires the solution of the Langevin equation

directly. The dynamics of the chain and all the relevant

correlation functions is determined by the following

Langevin equation

z0
v

vt
Rjðs; tÞK

3kBT

b2
v2Rjðs; tÞ

vs2

C
d

dRjðs; tÞ
HintfRðs; tÞgC

d

dRjðs; tÞ
VfRðs; tÞgZ fjðs; tÞ

(14)

where j labels Cartesian components and z0 is a bare

friction. Due to the non-linearity of the problem the solution

cannot be carried out analytically but only numerically. It

can be shown in detail, that the problem can be mapped on a

mode–mode coupling equation, which shows that upon

increasing disorder strength D relaxations are no longer

exponentially, but decay much slower.

Omitting all details (see [15]) we just provide the

essential results, which are important for the conclusions on

the elastic contribution on the modulus. The general

numerical analysis of the (non-linear) equations yield the

result in Fig. 9.

The figure shows more or less what has been described so

far. For small disorder parameter D!Dc nothing interesting

happens. The non-ergodicity parameter f(q) is zero for all

modes. Therefore, small disorder does not affect the chain

dynamics dramatically. For larger disorder strength the

modes become frozen, monitored by a finite value of f(q).

The way the modes are affected depends on the mode

number itself. The figure suggests that the local motions

(large mode number) are less influenced by disorder as large

scale motions. The thick line in the (D,q)-plane corresponds
to the inequality (12) for three dimension. However, a more

detailed look on the mode coupling, i.e. the behavior beyond

the condition Eq. (12) shows that all modes freeze at the
Fig. 9. The localization of the modes for varying disorder. The non-

ergodicity parameter f(q) is calculated it shows the selective freezing of the

Rouse modes numbered by q.
same disorder parameter, but the slope of their freezing

depends on the mode number.

Therefore, the results shown in Fig. 9 corresponds to a

finite resolution of the time scale in real experiments. The

use of the mode coupling, however, shows that the modes

indeed freeze at the same disorder Dc, but the slope how

they freeze depends strongly on the mode index, see Fig. 10.

Thus the modes will be selected according to their slope,

which is proportional to the mode index itself.

The slow dynamics is responsible for an unusual decay of

correlations in the mode relaxation of the chain. Therefore,

it is tempting to consider their non-exponential relaxation

and their contribution to the shear modulus.
4. Viscoelastic contributions to the modulus

Obviously the dynamics of the localized chains contrib-

ute to the elastic and viscoelastic properties of the

elastomer. The present theory allows scaling predictions

of the frequency and time dependence on the modulus.

We calculate, therefore, the contribution of the localized

chains to the modulus in the limiting time scales t1!t!
t1N

2. As stated above the theory suggests non-trivial

stretched exponential in the form

GðtÞf
X
q

exp K
b3

D

� �
UðqÞ

t

t1

� �b
( )

(15)

where the value of bZ3/4 is independent of the disorder.

The quantity U is by
Fig. 10. Freezing of modes according the mode coupling model. The non-

ergodicity parameter f(q) is zero at the same disorder, but their slope close

to Dc is proportional to q. Thus large modes, i.e. local motion still appears

mobile for a finite resolution, shown by the horizontal line, which separates

from the non-coupled (above) from the mode coupled regime.



T.A. Vilgis / Polymer 46 (2005) 4223–4229 4229
Uft1q
2 (16)

In the following, we present a scaling estimate of the

modulus. The results for the storage modulus can be

summarized as follows

G0ðtÞf
D

b3

� �1=2 t

t1

� �K3=8

(17)

which transforms into the frequency dependence:

G0ðuÞft1
D

b3

� �1=2

ðut1Þ
3=8 (18)

Therefore, the time or frequency dependence of the modulus

becomes strongly influenced by the disordered surface. The

scaling exponent, however, does (in this model) not depend

explicitly on the disorder parameter itself, but is merely

defined by the general scaling well known from disordered

systems.
5. Concluding remarks

We studied in the strong localization regime (very high

filler activity), the dynamics of the localized (occluded

rubber) phase is changed completely. For a certain strength

of the filler activity the chain dynamics appears glassy. Only

local motions are possible. We discussed several con-

sequences of this model with respect to the glass transition

properties and the viscoelastic behavior. We expect,

however, further detailed predictions under the incorpor-

ation of more detailed surface models. Nevertheless the
main features are already set up by the simple surface model

proposed in this research. In the near future we plan to apply

these predictions to experimental data in more detail.
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